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The gain and associated phase profile for two holes 
is shown in Fig. 12. Since the holes appear in the 
velocity profile and not strictly in the gain versus 
frequency curve we can consider that there is one 
"oscillating'' hole near the cavity resonant frequency 
and a complementary "nonoscillating" hole placed the 
same distance on the other side of line center. The 
presence of the hole at the oscillation frequency intro­
duces no additional phase shift into the feedback loop 
and the phase at v~tt marked dh in Fig. 12 is due 
entirely to the complementary hole. 

Defining the hole power gain as G/ t<l and noting 
the loop requirement that 

Gmn~{-Gcn~\~Ghn~ 0 , 
we find 

Ghn — GCn\ V 
Z i ( Q - w ) 

Zi(0) To 6=0 

(A12) 

(A13) 

From a lumped circuit element analysis similar to 
that used above, it follows that a complementary 
Lorentzian hole of width 4ya& introduces a phase at 
12 defined by 

[ l - V ^ ] ( a - c o ) / T a & 

0A=arctan . (A14) 
1 + V G A ( G - C O ) Y 7 « 6 2 

For small cavity losses — Gcn<3Cl and so therefore is 

— Ghn. 

VGk* 

in 
2*JThn 1. 

The arctangent is, therefore, approximately equal to 
its argument and 

— Ghn 7a&(^~CO) 
j 

2 7a6 2 +(a~C0) 2 

— Gcn{ Zi(ti — 0)) 
In 

zm 
-1 

7a6(12 —co) 

7a6=0 J 7 a 6 2 + ( ^ - C 0 ) 2 

(A15) 

To offset $h, the oscillation frequency must move an 
amount such that the cavity provides an amount of 
phase equal to — dh. 

VQ r Zi(ti—o. 
Avh =—\ri— 

2Q{ Z^G) 
- 1 

7a&(0 — «) 
(A16) 

This term is similar to pE2 calculated by Lamb differing 
significantly only for a cavity resonance near line center 
where the two holes overlap. I t appears to represent a 
hole repulsion effect between the "oscillating" and 
"nonoscillating" hole. 
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A strong exchange field, such as produced by ferromagnetically aligned impurities in a metal, will tend to 
polarize the conduction electron spins. If the metal is a superconductor, this will happen only if the spin-
exchange field is sufficiently strong compared to the energy gap. When the field is strong enough to break 
many electron pairs, the self-consistent gap equation is modified and a new type of depaired superconducting 
ground state occurs. In the idealization of a spatially uniform exchange field with no scattering, it is found 
that the depaired state has a spatially dependent complex Gorkov field, corresponding to a nonzero pairing 
momentum in the BCS model. The presence of the "normal" electrons from the broken pairs reduces the 
total current to zero, gives the depaired state some spin polarization, and results in almost normal Sommer-
feld specific heat and single-electron tunneling characteristics. The nonzero value of the pairing momentum 
also gives rise to an unusual anisotropic electrodynamic behavior of the superconductor, as well as to a de­
generate ground state and low-lying collective excitations, in accordance with Goldstone's theorem. The ef­
fects of scattering in an actual superconducting ferromagnetic alloy have not been studied and may interfere 
with experimental investigation of the theoretical results found in this paper for the idealized model. 

I. INTRODUCTION 

TH E R E is experimental evidence of ferromagnetic 
alignment of paramagnetic impurities when they 

are in the form of a dilute solution, dissolved in certain 

* Research supported in part by the U. S. Air Force Office of 
Scientific Research and by ARPA. This work forms a portion of a 
thesis submitted by one of the authors (Peter Fulde) to the faculty 
of the University of Maryland in partial fulfillment of the require­
ments for the Ph.D. degree. 

nonmagnetic metals. A typical example is the recently 
reported1 ferromagnetism of 0.8% of iron dissolved in 
gold, which has been found to exhibit a Curie tempera­
ture of 9°K. In some cases, when the host metal becomes 
a superconductor at sufficiently low temperature, there 

1 R. J. Borg, R. Booth, and C. E. Violet, Phys. Rev. Letters 11, 
465 (1963). Note added in proof. For an alternative interpretation 
of this experiment, not involving ferromagnetic ordering, see 
J. Crangle and W. R. Scott, Phys. Rev. Letters 12, 126 (1964). 
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is further evidence that the ferromagnetic alignment 
persists after the onset of superconductivity; e.g., 
gadolinium dissolved in lanthanum.2 '3 This situation 
raises the question of the nature of the perturbed state 
of the superconducting electrons, which are under the 
influence of the strong exchange field exerted on them 
by the ferromagnetically aligned paramagnetic impuri­
ties. The purpose of the present paper is to report a 
new solution to this problem, which leads to a state 
quite different from the coventional BCS ground state 
of the superconductor.4 

According to the conventional point of view, the ex­
change field exerted by the ferromagnetic impurities 
upon the conduction electron spins is either too weak 
to produce a change in the BCS state, or it produces a 
first-order phase transition to the normal state. The 
strength of exchange field required to overcome the 
energy gap and flip the spin of a superconducting elec­
tron is v2 greater than the strength at which the phase 
transition occurs. But we shall demonstrate that at a 
somewhat lower value of strength, an unexpected solu­
tion of the pairing equations enters. Thus, a first-order 
phase transition takes place from the BCS to this new 
phase, the "depaired" state, which subsequently passes 
continuously by a second-order phase transition into 
the normal state as the strength of the exchange field is 
increased. 

The new solution can be found only by studying 
significant departures from the BCS solution. Such situ­
ations are studied in Sec. I I where the gap equation is 
solved for the case of a relatively large number of elec­
tron pairs broken. A doubly infinite manifold of wave 
functions is found, depending upon the assumed mean 
momentum of pairing Q and the assumed value of the 
strength of exchange field H. In Sec. I l l a singly 
infinite family of solutions of the gap equation is selected 
which represents the ground-state solutions in the pres­
ence of an exchange field of varying strength H. Ac­
cording to Bloch's theorem,6 in order that these solu­
tions should represent the ground state, they should 
exhibit zero current. This is accomplished by balancing 
the total current of the unpaired electrons against the 
supercurrent generated by the nonzero value of pairing 
momentum Q. This requirement produces a function 
Q(H) so that, for every assumed value of the exchange 
field, there is a unique value of the pairing momentum. 
For these zero-current solutions the magnetization is 
calculated and hence the free energy in the ground 
state. In Sec. IV the peculiar anisotropic electrody-

2 B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Letters 
1, 92 (1958). 

3 N. E. Phillips and B. T. Matthias, Phys. Rev. 121, 105 (1961); 
see also B. T. Matthias, IBM J. Res. Develop. 6, 250 (1962). 

4 J. Bardeen, L. N. Cooper, and T. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 

5 H. Suhl, Low Temperature Physics, Les H ouches, 1961, edited 
by C. DeWitt, B. Dreyfus and P. G. DeGennes (Gordon and 
Breach Publishers, Inc., New York, 1961), p. 235. 

6 C. Kittel, Introduction to Solid State Physics (John Wiley & 
Sons, Inc., New York, 1953). 

namic properties resulting from the nonvanishing pair­
ing momentum are studied. I t is found that a super-
current of the usual London type flows in response to an 
applied vector potential parallel to Q, but that no 
supercurrent results for a weak vector potential per­
pendicular to Q. In Sec. V it is demonstrated that the 
presence of unpaired "normal" electrons in the de-
paired state causes it to have a Sommerfeld specific 
heat and a single-electron tunneling characteristic 
practically indistinguishable from those of the normal 
state. Section VI constitutes a brief summary, while 
three appendixes deal with the gap equation and the 
impurity spin alignment. 

II. EFFECT OF ELECTRON DEPAIRING 
ON THE ENERGY GAP 

Throughout this paper the actual system under con­
sideration, namely a dilute solution of paramagnetic 
impurities dissolved in a metal, will be idealized by a 
constant exchange field independent of space which 
acts only upon the electron spins. If the energy of split­
ting of the conduction electrons in the presence of this 
exchange field is 2HA0, where A0 is the BCS energy gap 
parameter, then we can write the Hamiltonian for our 
model in the form 

3C = X o + # A o X > ; , (1) 

where 3C0 is the usual Hamiltonian for a superconductor 
in the absence of an exchange field, and <ri is the opera­
tor zbl for the ith electron, depending upon whether it 
is aligned parallel ("up") or antiparallel ("down"), re­
spectively, relative to the exchange field. An approxi­
mate eigenfunction of the Hamiltonian of Eq. (1) is 
obviously the usual BCS ground-state wave function, 
with the associated eigenvalue simply the standard BCS 
ground-state energy. This is true because the second 
term in the right-hand member is proportional to the 
component parallel to the field of the total electron 
spin in the superconductor, which operator commutes 
with 3C0. 

If we want to find other eigenfunctions of 5C, we may 
at first try states of small total spin, corresponding to 
the breaking of only a few electron pairs. If the number 
of electron pairs broken is small enough not to affect 
the energy gap, then an energy of 2A0 has to be ex­
pended for each pair broken, while the reorientation of 
the electron spin gains, according to Eq. (1), 2HA0 for 
each pair broken. Thus, it is not possible to find a wave 
function of this type corresponding to an energy lower 
than the BCS ground-state energy, unless H is greater 
than unity. But it is easy to establish5 that the normal 
state, because of its response to the applied exchange 
field, undergoes sufficient spin orientation to acquire 
a lower free energy than the BCS ground state already 
at a value of H= 1/V2. Thus, states of small spin excita­
tion relative to the BCS ground state are necessarily 
excited states of the superconductor. I t is nevertheless 
useful, in our search for alternative ground-state wave 
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FIG. 1. Type S (single) depairing in momentum space produced 
by the spin-exchange field and by the shift of the Fermi sphere to 
the right. The heavily shaded portion of Fig. 1 (a) is occupied with 
certainty by down-spin electrons which are stabilized by the 
exchange field. The Galilean transformation causes them to 
assume an asymmetric distribution at the Fermi surface. The 
shaded portion of Fig. 1(b) is completely vacant of up-spin 
electrons. The remaining regions of the space are available for 
pairing. But because of the reduction in phase space, the energy 
gap is decreased. 

functions, to consider such excited states, and to imag­
ine that the excess spin, and hence the number of 
unpaired electrons, becomes continually greater. Even­
tually the number of unpaired electrons will be suf­
ficiently large to affect the energy gap and to reduce it. 
Nevertheless we still will have some pairing taking 
place and some coherence energy. The gap equation of 
BCS will still apply in essentially its original form: 

A=7E , C*k( l -*k ) ] 1 / 2 , 
k 

/•w A A 
= NV -de-VY, , (2) 

JO E excl2-Ek 

where 
£ k =(A 2 +€ k

2 ) 1 / 2 . (3) 

The prime signifies an omission from the sum over k 
space, corresponding to the blocking of states by the 
presence of unpaired electrons. Otherwise the standard 
notation of the BCS paper is followed. The effect of 
blocking7 is expressed in the second term of the right-
hand member of Eq. (2) where the sum over momentum 
space is to be carried out over all of the excluded re­
gions of momentum space. Such regions of momentum 
space are prevented by the Pauli exclusion principle 
from participating in the virtual pair scattering which 
gives rise to the energy gap A. Because of the blocking 
of these regions, we find, in the weak coupling limit 
( a ^ A ) the following suppression of the energy gap: 

-=exp{ E [£*(A)]-4 , (4) 
A0 I 2Ne*cl J 

where the dependence of the right-hand member upon 
the energy gap has been indicated explicitly. (In all of 

7 The blocking effect has received some attention in the case of 
pairing in nuclei. See, for example, S. G. Nilsson and O. Prior, 
Kgl. Danske Videnskab. Selskab, Mat Fys. Medd. 32, No. 16 
(1961). 
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the work in this paper we restrict ourselves to the case 
of zero temperature.) 

The most natural blocking configuration might be 
assumed to be one which is spherically symmetric in 
momentum space, corresponding to a uniform distribu­
tion of unpaired electrons of down spin at the surface of 
the Fermi sea. More detailed examination reveals, how­
ever, that such excess spin states are unstable and that 
the spherical symmetry of the blocking region can be 
modified, leading to a lowering of the energy of the sys­
tem. As a result the unpaired electrons tend to congre­
gate at one portion of the Fermi surface. Hence it is 
necessary to consider asymmetrical blocking regions. 
These give a net current flow for the unpaired electrons. 
In order to satisfy Bloch's theorem it is consequently 
necessary to have an equal and opposite current flow for 
the superconducting electron pairs. In this section we 
find the solution for the general case of nonzero pairing 
momentum and impose the requirement of exact can­
cellation of current only in the next section. 

Since it is our goal to find the lowest energy eigen­
value associated with the Hamiltonian of Eq. (1), we 
impose the requirement on the blocking region that it 
be such that no elementary excitations of negative 
energy are possible. The quasiparticle energy associated 
with the addition of a single particle of wave number k, 
normal energy ek, in the present model leads to an ex­
citation energy of the usual BCS quasiparticle energy 
plus additional magnetic and kinetic energy terms which 
are such that we obtain the boundary of the blocking 
region by the following formula: 

0 = E k + Q n k A 0 + HaA0 

= A[(l+€k
2/A2)1/2+?Mk+^]. (5) 

QAQ is the pairing momentum times the Fermi velocity 
and /ik is the cosine of the angle between the pairing 
momentum and k. For convenience in the analysis, the 
pairing momentum has also been measured in units 
relative to the actual gap A, rather than the unper­
turbed gap A0, resulting in the new parameters q=QA0/A 
and h=HA0/A. Such a blocking region is illustrated by 
the shaded portion of Fig. 1(a), which corresponds to the 
region of momentum space occupied with certainty by 
electrons of down spin. Figure 1(b) shows the region 
(shaded) which is completely vacant of up-spin electrons 
and which does not participate in the virtual pair scat­
tering. This is because of the blocking effect of the down-
spin electrons at the opposite side of the Fermi surface. 
As can be seen from Fig. 1, the case of vanishing normal 
particle energy e=Ogives the intersection of the block­
ing boundary with the Fermi surface and determines the 
angle subtended by the blocking region 

• / * ± =»r 1 ( i±A) . (6) 

The plus and minus signs refer to the case of up- and 
down-spin electrons, respectively. Equation (6) applies, 
of course, only when the cutoff values of the cosine of the 
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angle fall within the physical region of — 1 < / J ± < + 1. 
Figure 1 is drawn for the special case that only unpaired 
down-spin electrons are present (l>q—h> — l). This 
depairing situation involving only a single species of 
electron spin will be referred to as type S, while the 
case of q—h< — l gives down-spin electrons encircling 
the Fermi sea and will be referred to as type E blocking. 
In addition to these two cases, we have the situation of 
double depairing, when an excess of unpaired electrons 
of both up and down spin appears at the surface of the 
Fermi sea. This occurs for q— h> 1, and will be referred 
to as type D depairing. This more complicated type is 
illustrated in Fig. 2, where it is seen that the blocking 
effect of the down-spin electrons is augmented by the 
further blocking produced by the presence of a smaller 
number of unpaired up-spin electrons on the same side 
of the Fermi surface. The ranges of the various values 
of pairing momentum and exchange field are shown in 
Fig. 3, where the stable BCS domain in the lower left-
hand corner corresponds to q+h<l. For q+h>l we 
have the three different types of depairing discussed 
above and occurring in the three different regions of 
Fig. 3 separated by the dashed lines of unit slope. 

The width of the blocking region in momentum space 
is determined by solving for the single-particle energy 
from Eq. (5): 

€ / A = [ ( ^ + M 2 - l ] 1 / 2 . (7) 

The integration over this thin blocking region at the 
surface of the Fermi sphere gives the result 

N-1 X E-l = q-l[G{q+h)+G{q-ti)~] 
excl 

= -21n(A/A0). (8) 

The function appearing here is defined for positive 
values of the argument greater than unity as 

GO) = x cosh-1;*- 0 2 -1 ) 1 / 2 . (9) 

For | # | < 1 it vanishes, while for negative values, we 
define G(x) to be an odd function of x: G(x) = —G( — x). 

It is a straightforward matter to employ Eq. (8) to 
evaluate the gap for various assumed values of q and h. 

(a) (b) 

FIG. 2. Type D (double) depairing in momentum space. Here 
the shift of the Fermi sphere to the right is sufficiently greater than 
that in Fig. 1 that unpaired up-spin electrons are also stabilized, 
as shown by the heavily shaded region of Fig. 2 (b). This requires 
a corresponding completely vacant region for down-spin electrons 
pightly shaded in Fig. 2(a)]. The residual phase space for pairing 
is less than in Fig. 1, giving a further decrease in the energy gap. 

FIG. 3. Contours of equal energy gap A for an ideal BCS super­
conductor subjected to a strong spin-exchange field h, measured 
in units of the gap. Ao is the unperturbed BCS gap for h = 0, q is 
the pairing momentum (i.e., shift of the Fermi sphere shown in 
Figs. 1 and 2), in units of the gap divided by the Fermi velocity. 
Regions of type E (encircling), type S (single—see Fig. 1), and 
type D (double—see Fig. 2) depairing are separated by the dashed 
straight lines. The folding line / separates the unphysical (above) 
from the physical (below) regions and maps into the boundary 
in Fig. 4. The zero-current line, P = 0, corresponds to solutions of 
the gap equation for which the total momentum of the unpaired 
electrons cancels that of the pairs. The dashed parabolas represent 
the approximate gap expressions derived in Appendix I. 

Such a calculation yields the lines of constant A/A0 

shown in Fig. 3. With the results of this calculation we 
can now multiply the values of q and h by A/Ao to ob­
tain Q and H, respectively. This transformation maps 
the lines of constant A/Ao as shown in Fig. 4. These lines 
intercept the Cartesian axes of Figs. 3 and 4 at right 
angles. Equation (8) greatly simplifies along the Car­
tesian axes and reduces along H=0 to the gap equation 
for large supercurrents derived by Rogers,8 Bardeen,9 

and Parmenter.10 Along the <2=0 axis, Eq. (8) reduces 
to the gap equation found by Sarma.11 The present work 
extends these solutions away from the coordinates axes 
and out into the H-Q plane. As exhibited in Appendix I, 
simplified expressions can be extracted from Eq. (8) 
for the behavior of the constant gap lines in the vicinity 
of the axes. Close to the H— 0 and Q= 0 axes these lines 
have the shape of parabolas which bend toward and 
away from the origin, respectively. The same is true in 
the h-q diagram, as shown by the dashed lines in Fig. 3. 

The points infinitely removed from the origin in 
Fig. 3 have been brought in Fig. 4 to the curve 

Q+H=-
Q+H 

Q-H 

(Q-H)/2Q 

(10) 

It is along this zero-gap line that the solutions found 
here by blocking pass continuously into the normal 
ground-state wave function. As expected for a second-
order transition, it is shown in Appendix II that in the 

8 K. T. Rogers, Ph.D. thesis, University of Illinois, 1960 (un­
published). 

9 J. Bardeen, Rev. Mod. Phys. 34, 667 (1962). 
10 R. H. Parmenter, RCA Rev. 26, 323 (1962). 
11 G. Sarma, Phys. Chem. Solids 24, 1029 (1963). 
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FIG. 4. Contours of equal energy gap A for an ideal BCS superconductor subjected to a strong spin-exchange field H, measured in 
units of the zero-field gap A0. Q== (A/A0)q, so that this is a mapping of Fig. 3 in which the distance of every point from the origin of 
Fig. 3 is reduced by the factor A/A0. The unphysical sheet is shown shaded and joins the underlying physical sheet only along the fold­
ing boundary / . Points infinitely distant in Fig. 3 are mapped into the zero-gap line, A/A0 = 0, a portion of which forms a boundary of 
the unphysical sheet. The spherically symmetric depaired solutions (2 = 0) also constitute a boundary of the unphysical sheet. The zero-
current line, P = 0, lies entirely on the physical sheet and makes a normal intersection with the zero-gap line at its point of maximum 
H(IIM = 0.7 55). Its local stability portions are above the points W and 5 for weak and strong coupling, respectively. 

vicinity of the zero-gap line the gap is proportional to 
the square root of the distance in the H-Q plane from 
the zero-gap line. I t will be noted that the region of de-
pairing folds back upon itself along the curve 

A = ( l + 4 g 2 ) 1 / 2 - g , ( ID 

labeled / in Figs. 3 and 4. In Fig. 4 this curve is an en­
velope of the constant gap curves and becomes a bound­
ary for the depairing solutions in the Q<H portion. The 
region between this folding curve and the zero-gap 
curve contains two depairing solutions for every value 
of Q and H. Thus there are two sheets of solutions, 
which join along the folding curve. The first of these, 
the "physical sheet," is contiguous to the BCS domain 
and is accessible by continuous variation of II and Q 
away from zero. On the other hand, the second, or 
"unphysical sheet" is inaccessible to experimental ob­
servation, as it cannot be reached by continuous varia­
tions of Q and H. I t may be noted that type E blocking 
only gives solutions on the unphysical sheet, and in par­
ticular, that the symmetrical depairing solutions, lying 
along the line Q = 0, are a boundary of the unphysical 
sheet. Thus, we see that they must be rejected not only 
because of their instability with respect to perturba­
tions as discussed before but also because of their lack 
of accessibility, lying as they do on the unphysical 
sheet. 

III. CURRENT MAGNETIZATION AND 
GROUND-STATE ENERGY 

In the above section we have found a large variety of 
solutions to the pairing equation. Most of these corre­
spond to some form of excited state of the system and 
are not of interest to us here. Our objective is to find 
ground-state eigenvalues of the Hamiltonian of Eq. (1). 
To guide us in the search for ground-state solutions, we 
rely upon Bloch's theorem which requires that the low­
est energy solution should have zero current. Allowing 
for the charge-to-mass ratio of the electron, it will be 
convenient for us to discuss current in terms of mo­
mentum density. Therefore, we now wish to select out 
of all the solutions corresponding to arbitrary points in 
the H-Q plane of Fig. 4, those solutions which have 
vanishing total net momentum. But we have seen that 
the unpaired electrons assume an asymmetric distribu­
tion at the Fermi surface, which results in a net total 
momentum for them. This momentum can easily be cal­
culated by integrating over the regions shown in Figs. 
1 and 2 (allowing for the necessary factor of /x for the 
component of momentum in the direction of the pairing 
momentum) to give the following expression for the 
total momentum density of the unpaired or "normal" 
electrons: 

Pn=- (NpFA/2q*){q[y(r+)+y(rJ)-] 

- * [ 8 ( f + ) + « ( r - ) ] } , (12) 

where q=kh has been abbreviated by r±. The functions 
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which have been introduced in Eq. (12) are defined as 
follows: 

y(x)~x(x2—1)1/2—cosrr%, (13) 
and 

d(x) = %xy(x) - (x2-1)3 / 2 , (14) 

provided x>l. y(x) and 8(x) vanish for | # | < 1 . Be­
sides this total momentum of the normal electrons, we 
have a supercurrent momentum density resulting from 
the commom momentum of pairing, qy which gives a 
total value to the entire system of paired electrons of 

Pa = iNpFqA. (15) 

Bloch's theorem requires that P—Pn+Ps should 
vanish for the ground state. This leads to the following 
equation for q: 

qz-hLy(r+)+y(r-)2+KKr+)+d(rJ)^0. (16) 

In actuality, r+ and r_ also depend upon q so that Eq. 
(16) is difficult to solve in the general case. For the case 
of r_< 1, however, the dependence upon r_ disappears 
and it is possible to assign a fixed value to the variable 
r+ and to solve for the corresponding value of q by the 
standard formula for the roots of a cubic equation. This 
procedure applies to the region S of Fig. 3. The solution 
of Eq. (16) for type D blocking is more complicated, but 
is facilitated by approximations which are permitted 
for the relatively large values of r± which occur for this 
case. The results of numerical computation are repre­
sented by the P = 0 curve shown in Figs. 3 and 4. 
Bloch's theorem is satisfied only by solutions which fall 
along this line. Points which fall off the line can, there­
fore, not represent ground-state energy eigenvalues of 
the Hamiltonian of Eq. (1). It is of interest to note 
that the Q^O portion of the P = 0 curve lies entirely 
on the physical sheet, but that it exhibits a minimum in 
the H=Q plane at Q=Qm=0.69 and H=Hm=0.63. 
For field values H<Hm there are no depaired solutions 
satisfying Bloch's theorem, and hence the BCS state is 
the only ground state possible. 

It is of interest to locate the intersection of the P = 0 
and A=0 curves. In other words, we want to find the 
values of the parameters Q and H at which the gap 
vanishes, always keeping the current zero. This is 
easily found from the asymptotic expressions for the 
functions y(r±) and 5(±). The result is that the asympto­
tic slope in the h—q plane is determined by 

or 
coth(q/h) = q/h 

h/q=0.833. 

(17) 

(18) 

In the H— Q plane (Fig. 4) this intersection is the maxi­
mum H point along the zero gap line, as required by a 
simple symmetry consideration. Denoting the co­
ordinates by QM and HM, we find from combining Eq. 
(10) with Eq. (17) that QM

2-HM
2=h Equation (18) 

gives HM/QM=0.833, so that (QM,HM) = (0.904,0.753). 
In the vicinity of this point, the region to the right of 

the zero current line corresponds to a net positive cur­
rent and the region to the left, to a negative current. 

Bloch's theorem is a necessary but not sufficient con­
dition, for the lowest energy eigenvalue. It guarantees 
only that the energy is an extremum relative to small 
changes of the pairing momentum for a fixed value of 
field H. Thus the zero current requirement can lead to 
unstable as well as stable solutions. This occurs along 
the boundary of the unphysical sheet (Q=0 and 
0.5<#<1.0), as already discussed above in Sec. II, 
and also along the Q<Q<Qm portion of the P = 0 line. 
Such solutions are unstable with respect to acceleration 
of the supercurrent, and do not come into consideration 
here. It is evident from the dependence of the energy on 
the square of the current that all of the points lying 
along the Qm<Q<QM portion of the zero current line 
correspond to solutions which are locally stable. But 
further investigation is required to establish their actual 
gross stability in comparison to the other possible zero 

0.6 HM0.8 H 

(a) WEAK 

FIG. 5. Magnetization of the zero-current depaired states in 
units of iVA0 (density of states times zero-field gap) versus H 
(spin-exchange field in units of A0). M=0 in the BCS state, while 
the straight line (n) gives the normal-state magnetization. The 
effect of H upon the free energy is proportional to the area under 
the magnetization curve. For the vertical line of Fig. 5(a) at 
Zf=l/v2 the normal and BCS free energies are equal for weak 
coupling. The depaired state has lower free energy and is stable 
for all higher fields less than HM = 0.755. See text for discussion 
of the slanting load lines of Fig. 5 (b) pertaining to strong coupling. 
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FIG. 6. Energy gap versus spin-exchange field in units of the 
zero-field gap for weak and strong coupling. Exchange between 
the polarized electrons is unfavorable to the normal state and 
gives a depaired state stability range of 30% for strong coupling. 
The stability range for weak coupling is only 8%. The dashed 
parabolas represent the approximate gap expression derived in 
Appendix II. The vertical lines with arrows indicate the first-order 
phase transitions which occur from the BCS to the depaired state 
for weak and for strong coupling. 

current eigenfunctions of Eq. (1), viz., the BCS state 
and the normal state. 

For the purpose of comparing the energies of differ­
ent zero current solutions it is useful, instead of sum­
ming up the various contributions to the total energy, 
to make use of the following differential relationship 
between the expectation value of the energy in a given 
state characterized by exchange field H, and the mag­
netization which is present in that state. 

a-^aeyaCff Ao)]= -AT , (19) 
where 0 is the volume of the system. 0_1(5C) can be 
identified with the free energy density F. Thus, Eq. 
(19) is equivalent to the usual integral formula for the 
change in free energy upon passing between two differ­
ent states, 1 and 2. 

F2-F1=- j Md(HAo). (20) 

The magnetization is defined by the expectation value 
of the total component of the electron spin in the direc­
tion of the exchange field. 

M^-Q-i&itn). (21) 

With this definition of M the actual numerical value 
can be calculated directly by integrating over the de-
pairing regions, with the result 

M= (NA/2q)ly(r+)-y(r-y}. (22) 

This result is plotted as the curved line in Fig. 5, where 
the zero current line has been used to eliminate q and 
it will be seen that for Hm<H<HM there are two inter­
sections of the vertical H= constant line with the 
magnetization curve, and hence two different magnetiza­
tions possible. These correspond to the two intersec­

tions with the zero current line in Fig. 4. As already 
discussed, only the upper intersection is locally stable. 
From Eq. (20) we see that it is also stable relative to 
the normal state, whose magnetization curve is the 
straight line passing through the origin. It remains, 
however, to investigate the stability of this solution 
relative to the BCS state. This problem is illustrated in 
Fig. 5 by the areas enclosed by the magnetization curve 
and shaded horizontally. When the value of H is such 
that area A is equal to area B, then, according to 
Maxwell's12 rule applied to Eq. (20), the energies of the 
BCS and the depaired states are precisely equal. For 
smaller values of H the BCS state is the energetically 
more favorable one, while for large values of H area B 
grows and area A shrinks, increasing the stability of the 
depaired relative to the BCS state. 

The actual computation of the relative stability of 
the depaired state is facilitated by the knowledge that 
the free energies of the BCS and normal states are pre­
cisely equal at H== l/v2. For the vertical line labeled 
"weak" in Fig. 5, with this value of H, the areas A and 
C sum exactly to area B. For this value of H, the de-
paired state is more stable than both the BCS and 
normal states by the area C. Thus, the field at which 
the first-order transition from the BCS to the depaired 
phase occurs is slightly less than l/v2" and is given 
approximately by 

1 1 rHM 

H « / (Mn-M)dH. (23) 
V2 M(l/tf) A/V2 

Neglecting this small difference, we expect the depaired 
state to be the actual ground state of the system in the 

FIG. 7. Free energy F relative to zero-field normal state, in units 
of the BCS condensation energy JEBCS, for weak and strong 
coupling. #ex is the external spin-exchange field applied to the 
electrons. The BCS state has no field dependence, while the 
normal-state dependence is shown by the dashed parabolas 
(labeled n). The stability of the depaired state is only a fraction 
of a percent of EBCS, but is increased by an order of magnitude by 
strong coupling. The second-order phase transition at the upper 
field (HM and HM') is represented by the tangency of the solid 
and dashed curves. 

12 J. C. Maxwell, Nature XI, 357 (1875); Collected Works 
(Dover Publications, Inc., New York, 1900), Vol. 2, p. 425. 



S U P E R C O N D U C T I V I T Y IN S T R O N G S P I N - E X C H A N G E F I E L D A557 

range 0.71 <H<0.76. Over this range of stability, the 
square of the gap varies roughly linearly with field, as 
1—H/Hn (see Appendix I). This is shown in Fig. 6 by 
the dashed parabola and can be compared with the solid 
curve (labeled "weak") which exhibits the exact vari­
ation of A/A0 versus H. The gap decreases from the 
value 0.23 Ao at #=0.71 to zero at H=HM, where it 
has infinite slope and the second-order transition to the 
normal state occurs. 

The behavior of the free energy over this range is 
shown by the curve, labeled "weak," in Fig. 7, where 
F(in units of the BCS condensation energy) is plotted 
versus H. As noted above, the magnetization in the de-
paired state is only slightly less than that in the normal 
state. Consequently, the free energy is also only slightly 
lower—by a few tenths of a percent of the BCS con­
densation energy. As we will demonstrate immediately, 
this is greatly increased by the exchange interaction of 
the normal electrons among themselves. But even 
without this effect, one should not suppose that the 
depaired state could easily be spoiled by a slight in­
crease in temperature above absolute zero. Although 
the detailed temperature dependence of the model re­
mains to be investigated (except for the H=0 and Q=0 
lines studied in Refs. 9 and 11, respectively), one should 
expect that the magnitude of the energy gap should de­
termine the transition temperature. 

A further feature of the free energy shown in Fig. 7 
is the cusp arising from the double-valued nature of M 
versus H and from the infinite slope in Fig. 5 at H=Hm. 
The locally unstable depairing solutions, already re­
jected above, lie beyond the cusp in Fig. 7. 

In the above work the interaction between a pair of 
electrons has been included, but the interaction of un­
paired electrons neglected. The same potential which 
produces scattering between pairs of electrons and leads 
to the establishment of the energy gap will also give 
exchange scattering between any two normal electrons 
and thereby modify the energy of the depaired state. 
This effect decreases the stability of the depaired state 
relative to the BCS state, but its effect on the normal 
state is even greater, because of the larger magnetiza­
tion. The effect of the interaction on the spin suscepti­
bility is already well known in nonsuperconducting 
metals. For the repulsive Coulomb potential this is the 
usual exchange scattering which favors ferromagnetism, 
and for paramagnetic metals tends to increase the 
paramagnetic spin susceptibility. It is an effect which is 
included by Landau13 in his discussion of the quasi-
particle treatment of the spin susceptibility of a Fermi 
liquid, and has also been discussed from a somewhat dif­
ferent point of view by one of the present authors.14 

A useful picture for this effect is that of the molecular 
field, the basis of the Weiss theory of ferromagnetism. 
In the present case of interest, because of the attractive 

13 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956) 
[English transl.: Soviet Phys.—JETP 3, 920 (1957)]. 

14 J. J. Quinn and R. A. Ferrell, Plasma Phys. 2, 18 (1961). 

short-range potential of the BCS theory, the molecular 
field is opposite in sign relative to its usual direction 
and is unfavorable to the polarization of electrons.15 

It subtracts from the actual external exchange field 
applied to the sample, HeK. Thus, the net magnetic 
field which effectively serves to act on any given elec­
tron spin is 

HeH=He*-iNV(M/NAo). (24) 

This relationship between the effective forcing field, 
Heft, and the response to it, M, is similar to that already 
familiar in electronic circuitry. There, the signal applied 
to a circuit element in series with a load impedance is 
reduced by the current flowing through the load, in 
proportion to its impedance. If the response of the cir­
cuit element is known for any value of the net effec­
tive input, then a simple construction of the "load line" 
on a graph of current versus input leads to a self-
consistent determination of both the net effective input 
and the output for any given value of applied signal.16 

In the present case, the load line is a straight line of 
slope —2/NV drawn on Fig. 5. The intercept with the 
abscissa axis is Hejc. For any given value of the inter­
cept, the load line is completely determined, once the 
value of NV has been specified for the material of in­
terest. In the weak coupling limit, iVF—»0, the load 
line becomes the vertical line of constant applied H, 
already discussed in connection with Fig. 5. For stronger 
coupling, however, the finite slope of the load line has 
important consequences. First of all, it should be 
noticed that for a given value of #ex, the normal mag­
netization is reduced by the factor 1+iVF. Conse­
quently, the value of the external field at which the gap 
in the depaired state passes to zero is increased by this 
same factor, giving 

HM'=a+NV)HM. (25) 

The situation is illustrated in Fig. 5 by the dashed load 
line. A further field strength of interest is the value for 
which the BCS and normal states have equal free energy. 
In the weak coupling limit this is 1/vZ. Because of the 
suppression of the normal state susceptibility, this field 
is increased by the factor (1+NV)1/2. The areas en­
closed between the load line corresponding to this value 
of #ex and the magnetization curve are shown with 
vertical shading. Areas A and C sum exactly to area B. 
As discussed above in connection with Eq. (23), the 
value of He* defined in this way is only slightly greater 
than the value at which the first-order phase transition 
occurs between the BCS and depaired states. Because 
of the stronger dependence of HM' on NV, it is evident 
that the range of stability of the depaired state is in­
creased by strong coupling. As a numerical illustration, 

15 A. M. Clogston, Phys. Rev. Letters 9, 266 (1962). 
16 This idea has also been applied by the authors to the deter­

mination of the supercurrent flowing in a doubly connected 
superconducting film, in response to an externally applied flux 
[P. Fulde and R. A. Ferrell, Phys. Rev, 131, 2459 (1963)]. 
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FIG. 8. Ratio of the strengths of the London supercurrent in the 
depaired and BCS states versus spin-exchange field. Xz, is the 
London penetration depth and X the penetration depth for a weak 
vector potential applied parallel to the pairing momentum. Only 
the upper portion of the strong coupling curve has been determined 
exactly. The vertical lines with arrows indicate the first-order 
phase transitions which occur from the BCS to the depaired state 
for weak and for strong coupling. 

NV—% may be chosen to represent the strongest cou­
pling case encountered among the superconductors. 
This gives 5V=1.13, while the equality of the BCS 
and normal-state free energies occurs at Hex=0.S7. 
Application of Eq. (23) yields a slightly lower value for 
the first-order transition to the depaired state, leading 
to stability of the depaired state in the following range 

0.83<#ex<1.13. (26) 

This is a range of stability of about 30%. The smallest 
value of external field for which a depaired solution 
exists at all is found by shifting the load line of Fig. 5 
to the left until it becomes tangent to the magnetiza­
tion curve. This yields HJ=0.79. Thus it is seen that 
for strong coupling the effect of exchange between the 
depaired electrons is to make most of the locally stable 
depaired solutions stable also relative to the BCS state. 
The range of stability covers almost the entire range of 
available solutions. This situation is illustrated in Fig. 
7 by the curve labeled "strong" for which the free 
energy is greater than that of the BCS state only over 
a small vicinity close to the cusp. Figure 6 shows the 
decrease ("strong" curve) of the gap as a function of He* 
from 0.6A0 to zero at HM'. Near HM

f the parabolic 
variation discussed above is a good approximation 
(dashed curve). 

IV. ELECTROMAGNETIC PROPERTIES 

The response of the depaired ground state of the 
superconductor to an applied electromagnetic field is 
easily obtained as an extension of the above work if we 
limit our attention to the case of small perturbations. 
For this case we may expand the total momentum of the 
electrons, including both the coherent pairs and the 
normal electrons, as a power series in the deviation in 
the H-Q plane from the P = 0 line determined in the 

previous section. For small perturbations we may 
neglect all terms in the Taylor series expansion except 
the first-order terms, for which the expansion reduces 
simply to 

dP= (dp/dQ)dQ+ (dP/dH)dH. (27) 

Let <2o be the value of the pairing momentum which 
identifies the zero-current depaired state for some par­
ticular value of Hex. Thus the infinitesimal change dQ 
can be written as a deviation of the pairing momentum 
away from its ground-state value, or Q—Qo. As the load 
line considerations which led to Eq. (24) still apply for 
current-carrying states, we may differentiate Eq. (24), 
keeping Hex fixed and neglecting the subscript on Hen. 
This gives us the following relationship between the 
differential changes in the pairing momentum and in 
the net effective exchange field: 

V dM V dM 
dH= —dQ dH. 

2A0 dQ 2A0 dH 
(28) 

Elimination of dH from Eqs. (27) and (28) yields a 
simple linear relationship between dQ=Q—Q0 and the 
current / , which is proportional to dP: 

J= - (c2A0/^evF)\-2(Q-Qo) • (29) 

This equation serves to define the quantity A"2. In the 
weak coupling limit, dH=0, and \~~2 is simply pro­
portional to dP/dQ. \~2 has the dimensions of the re­
ciprocal of the square of a penetration depth, and there­
fore the result of computation is plotted in Fig. 8 as 
the ratio of X~2 to the reciprocal of the square of the 
London penetration depth, 

\iT2—4:TMe2/inc2. (30) 

c is the velocity of light, e and m the electron charge 
and mass, and n the density of conduction electrons. 
The curve labeled Weak in Fig. 8 represents the result 
of such a computation, while the curve labeled Strong 
has been determined only near the upper end point, 
HM'• Exact determination of the complete curve would 
require the evaluation of all four of the partial deriva­
tives occurring in Eqs. (27) and (28), which could be 
carried out in a straightforward manner. 

Thus we see that there is a one-to-one correspondence 
between the value and direction of the pairing momen­
tum Q and / , the net current which flows in the de-
paired superconductor. As evident in Fig. 8, the pro­
portionality constant is reduced roughly by a factor of 2 
compared to the superconductor in the absence of spin-
exchange field, because of the response of the normal 
electrons. We may now ask the question, "Suppose 
that a uniform current / is flowing in the depaired super­
conductor, what will now be the effect of a perturbing 
vector potential?" This question can be easily answered 
by noting that the presence of a weak vector potential 
can be alternatively described by an equivalent change 
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in the vector momentum of pairing according to the 
relation 

5(QA0/vF) = (e/c)Ay (31) 

where vp is the Fermi velocity. I t is convenient to re­
solve the perturbing vector potential into components 
parallel and perpendicular to the current. The parallel 
component Au leads simply to an increment of the cur­
rent in the same direction, Jlh independent of the mag­
nitude of the current which was already present. 

/ n = (-c/4ir)X-2i4 I I . (32) 

This equation is of the same form as London's equation 
for the current which flows in an ordinary supercon­
ductor in response to an applied vector potential. Thus 
the parameter X, introduced above, can be identified as 
the penetration depth for the screening of such a dis­
turbance by the superconductors. 

The response of the depaired state to the perpendicu­
lar component of the vector potential is, however, 
quite different. Here a small perpendicular component 
serves only to rotate the direction of the pairing mo­
mentum, by an angle equal to the ratio of eAJc to the 
quantity Q0A0/VF. According to Eq. (31) a small 
perpendicular vector potential does not alter the mag­
nitude of the pairing momentum, and thus serves only 
to produce a perpendicular component of current pro­
portional to the angle of rotation and to the current 
already present: 

Jx=(evF/cA0Qo)JAl. (33) 

The relationship expressed by Eq. (33) can be more 
readily understood by substituting for the original cur­
rent from Eq. (29), to give the following relationship be­
tween the perturbing vector potential and the current 
which flows in response to it: 

Ji= (c/^UQ-QoWQolK-tA,. (34) 

This is similar to the relationship discussed above for 
Eq. (32), except now that the penetration depth is 
clearly current dependent, and is given by the expression 

Xx=Ko/02-eo) ] 1 / 2 X, (35) 

where the quantity Q—Qo can be expressed in terms of / 
if preferred. I t will be noted that only positive values of 
Q—Qo give stability of the system with respect to per­
pendicular disturbances (instability is formally ex­
pressed by an imaginary value for the penetration 
depth). I t should further be noted that as the current 
flowing through the sample is allowed to become 
vanishingly small, the screening of the perpendicular 
component of the vector potential becomes progressively 
weaker, and corresponds to a penetration depth which 
approaches infinity. I t is important to keep in mind, 
however, that this conclusion holds only for small per­
turbations and that the electrodynamic properties are 
considerably more complicated if this restriction is not 
satisfied. 

FIG. 9. Quasiparticle energies in the depaired state E versus 
normal state single-electron energy e. The zero-energy reference 
level for the usual BCS curve has been shifted by the energy 
Eo = Ao(H—jj,Q) to the heavy horizontal line. A0H is the spin-
exchange energy, A0Q the pairing momentum times Fermi velocity 
and A0 the BCS energy gap. /z is the cosine of the angle between 
the pairing momentum and single-particle momentum, while A 
is the actual gap in the depaired state. The energies required to 
add a down-spin {E±=E—EQ) or up-spin {E^—E^—E) electron 
are given by the distances from the line E — E^ up or down, 
respectively, to the hyperbola. The intersections of this line with 
the hyperbola determine the zero-energy quasiparticle excitations 
of the system. 

V. QUASIPARTICLE SPECTRUM 

The energy required to add an electron to the de-
paired state is easily calculated along the lines explained 
in the BCS paper. In the present problem special atten­
tion must be paid to the Pauli exclusion principle, 
which prevents the addition of a particle to a momen­
tum state in the blocking region. On the other hand, we 
get two types of excitation when we add an electron to 
one of the vacant regions in Figs. 1 or 2. These cor­
respond to the production of a bound pair or of an ex­
cited pair. Paying attention to such details, one readily 
establishes that for every momentum k, there exists a 
quasiparticle excitation of energy given by the absolute 
value of the right-hand member of Eq. (5). The de-
paired state clearly has arbitrarily low-lying quasi­
particle excitations, as is seen from the fact that along; 
the boundary of the blocking region, Eq. (5) holds. For 
a given value of juk, Fig. 9 illustrates the relationship 
between the BCS quasiparticle energy E k and the 
actual quasiparticle excitation energies, Ei and Et, 
associated with the addition of a down-spin electron of 
momentum k and an up-spin electron of momentum 
— k, respectively. I t will be noted that this is the usual 
relationship of the BCS theory except for a shift in the 
zero of energy, as shown by the solid line drawn across 
the graph at the positive energy (H—JJ,Q)AQ. The en­
ergy for the addition of a down-spin electron is measured 
upwards from this value, while the energy for the addi­
tion of an up-spin electron is measured down from this 
value. Differentiation of these curves with respect to E 
for a fixed value of /z gives the customary BCS density 
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FIG. 10. Density of states per unit energy for the quasiparticle 
excitations formed by adding a down-spin (Ei—E—Eo>0) or an 
up-spin (Et = EQ—E>0) electron to the depaired state, for a 
particular portion of the fermi sphere. Notation is the same as in 
Fig. 9. The state density for zero excitation energy is given by the 
interaction of the heavy vertical line a,tE = EQ with the BCS curve. 

of state variation shown in Fig. 10, but again with a 
shifted energy origin. The density of states for down-
spin additions is shown to the right of the heavy ver­
tical line, while up-spin excitations have the density of 
states per unit energy shown to the left of the heavy 
vertical line. All of the excitations are, of course, posi­
tive energy, as already guaranteed by the condition in­
troduced in Sec. I I that no negative energy excitations 
should be possible in the depaired ground state. The 
actual total density of states for the addition of a par­
ticle to the depaired state is found by superposing the 
portion of Fig. 10 to the right and left of the heavy 
vertical line and integrating over all the values of /x. 
This has been done for a few special cases. Figure 11 
shows the density of states curve for # = 0 . 6 4 , <2=0.75, 
A=0.50 Ao, a case attainable with strong coupling near 
the lower end of the stability range. I t will be noted that 
the density of states is qualitatively quite similar to the 
constant density of states exhibited by a normal con­
ductor, although some structure is in evidence in Fig. 
11. For stronger exchange fields, the structure is less 
pronounced and the density of states curve passes con­
tinuously into the constant normal density of states 
(dashed line in Fig. 11) as the gap decreases. 

I t follows from the existence of low-lying quasi­
particle excitations that the depaired state should 
exhibit a Sommerfeld type specific heat linear in tem­
perature. The Sommerfeld y for the depaired state is 
proportional to the zero-energy value of the density of 
states curve for quasiparticle excitations. For the case 
shown in Fig. 11, this is only 14% below the normal 
value, and approaches the normal value rapidly as the 
gap decreases. Normal state behavior in tunneling and 
in the specific heat can be expected generally to set in 
whenever a mechanism exists in a superconductor for 
breaking the electron pairs. The specific mechanism 
studied in this paper, that of a uniform spin-exchange 
field, is by no means the only possible one. The opposite 
situation to that studied here, that of randomly oriented 
and distributed impurity spins, has been investigated 

by Abrikosov and Gor'kov17—with somewhat similar 
results. They found that at an impurity concentration 
of 90% of that required to reduce the gap to zero, new 
properties appear because of the presence of normal 
electrons. Normal tunneling behavior of the expected 
sort has been observed by Reif and Woolf18 for various 
dilute solutions (e.g., iron in indium), but it is not 
known whether or not their ferromagnetic impurities 
are ordered. If not, then the Abrikosov-Gorkov theory 
would seem to apply, but if they are ordered, the ap­
proach developed in this paper might be more relevant. 
Some considerations on the energetics of the impurity 
spin alignment are given in Appendix I I I . 

VI. SUMMARY 

The problem of a strong exchange field acting on the 
electron spins in a superconductor has been studied in 
the ideal case of a uniform field in the absence of scat­
tering processes. I t has been found that a qualitatively 
new depaired state with unusual properties exists over 
a finite range of the strength of the exchange field. As 
the exchange field increases, the energy gap of the de-
paired state decreases and passes continuously to the 
normal state. In contrast to the completely paired BCS 
state, the depaired state exhibits spin magnetization, 
almost normal tunneling and specific heat, and an ab­
sence of supercurrent for weak vector potentials perpen­
dicular to the pairing momentum. I t is this last feature 
which is the most striking and which can be expected to 
be the most difficult to observe experimentally. This is 
because scattering in an actual sample will tend to in­
validate the above treatment based on plane-wave 
single-particle states, insofar as the momentum relaxa­
tion rate in the normal state is greater than the energy 
gap. For short mean free path, all anisotropy in momen­
tum space should vanish, and the effect of the uniform 
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FIG. 11. Total density of states per unit energy versus quasi­
particle energy -EQ.P. in units of the zero-field gap Ao, for the 
depaired state with energy gap 0.5 A0. The density of states shown 
in Fig. 10 has been summed over both spins and over all portions 
of the Fermi sphere. The dashed line represents the normal density 
of states. The structure in the depaired state, which would be 
observable in tunneling experiments, disappears as the exchange 
field is increased and the gap decreases. Because of the density of 
low-lying quasiparticle states, the depaired superconducting state 
exhibits a Sommerfeld specific heat almost as large as in the 
normal state. The calculation assumes that the tunneling matrix 
element does not depend upon the direction of the quasiparticle 
momentum (diffuse surface condition). 

17 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 
39, 1781 (1960) [English transl.: Soviet Phys.—JETP 12, 1243 
(1961)]. 

J8 F. Reif and M, A. Woolf, Phys. Rev. Letters 9, 315 (1962). 
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exchange field can be expected to be quite different from 
tha t found above. Taking into account momentum 
and spin relaxation in the present model remains a 
problem for the future. 

I t is interesting to note tha t the idealized model 
studied above yields a highly degenerate ground state, 
characterized by the direction of the pairing momentum, 
or alternatively, by the wave number of the sinusoidal 
spatial dependence of the Gorkov function. Goldstone's 
theorem19 requires tha t there must exist low-lying col­
lective excitations of the system. The nature of these in 
the present model has not been investigated. I t should 
also be noted tha t the perturbing field acting upon the 
superconducting electron spins in the model treated 
above can be an ordinary magnetic field rather than an 
exchange field, provided tha t the orbital effects of the 
magnetic field can be neglected. Thus, the results 
found here extend somewhat the high-field limit of 
superconductivity discussed by Clogston.15 Similarly, 
the temperature dependence of the model (which has 
not yet been studied) might be relevant to the high-
field effects investigated in tin by Knight and Androes.20 

APPENDIX I. SIMPLIFIED GAP EQUATION 

Equation (8) determines the energy gap A for any 
choice of q and h, corresponding to an arbitrary point 
in the h—q plane. I t is useful to note, however, tha t con­
siderable simplification results when one of the varia­
bles is small, corresponding to the two strips in the 
quarter plane along the two axes. To find the depend­
ence of the gap to second order in the small quanti ty, 
we will need the first three derivatives of the function 
G(x), defined by Eq. (9). These are 

G,(x) = coshr1x, (36) 

G"(x) = (x2-l)~1/2, (37) 

G"'(x)=-x(x2~l)-*/2, (38) 

assuming x>l. Taylor's series expansions in powers of 
h and q are immediately found to be 

-2q\n{A/A,) = 2G{q)+h2{q2-l)~l/2, (39) 

and 

~2qHA/Ao) = 2coshr1h-lq2h(h2-l)~m
J (40) 

respectively. Thus, small excursions from the h=0 axis 
reduce the gap while small deviations from the #=0 
axis increase it. (The mapping into the H-Q plane shown 
in Fig. 4 changes, however, this last feature.) For h=0, 
Eq. (39) becomes 

A/Ao=exp[-G(^)A], (41) 

the gap equation for large supercurrents derived by 
Rogers,8 Bardeen,9 and Parmenter.10 For g=0, Eq. 

19 J. Goldstone, Nuovo Cimento 19, 154 (1961), See also J. 
Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962). 

20 G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961). 

(40) can be further simplified to 

A0/A=h+(h2-l)1/2, (42) 
and 

A/A0=(2H-l)l/\ (43) 

for 0.5<H<1.0 as found by Sarma11 for zero 
temperature. 

The behavior of the constant gap curves in the h—q 
plane is readily obtained from Eqs. (39) and (40). Let 
the g a p = A curve cut the axes at q& and HA> Substituting 
Eq. (41) (written now in terms of #A) into Eq. (39) 
yields 

< ? - < ? A = - [ < ? A / 2 ( < 7 A 2 - D > 2 , (44) 

a parabola normal to the h=0 axis and curved toward 
the q=0 axis. Similarly, substitution of Eq. (42) (with 
h written as HA) gives 

h-hA= ZhA/6(hA2- l ) ] g 2 , (45) 

a parabola normal to the q=0 axis and curved away 
from the h=0 axis. These parabolas are shown as dashed 
curves in Fig. 3. As the mapping of Fig. 3 onto Fig. 4 is 
simply a change of scale by A/A0, the behavior of the 
constant gap lines in the vicinity of the # = 0 and Q=0 
axes is also tha t of parabolas. 

APPENDIX II. SECOND-ORDER PHASE TRANSITION 

I t is of interest to study the manner in which the 
energy gap vanishes as the zero gap line, Eq. (10), is 
approached in Fig. 4. Insertion of the asymptotic ex­
pression for G(x) for large values of x into Eq. (8) gives 

A0 h q+h 
l n - ^ J ln41 q2-h2\ +— In 

A 2q \q-h\ 

- l+ i [ l / (<? 2 - ^ 2 ) ] (46) 
and 

(A/A0)2=4(e2-ff2)S(e,#), (47) 
where 

H Q+H 
g ( f t f f ) = l - i l n 4 < 2 2 - l P In- - . (48) 

2Q \Q-H\ 

As setting 9 = 0 gives Eq. (10), we can write 

|g |^Aff |dg/di I | (49) 
= (At f /# ) ( l~§ ln4 | e2 - iP | ) , 

where AH is the vertical distance from the zero-gap 
line in Fig. 4. Substituted into Eq. (47), this gives the 
linear variation of the square of the gap with AH in the 
vicinity of the phase boundary. At the intersection of 
the zero-current and zero-gap lines, 4(Q2—H2)~ 1, so 
that Eqs. (49) and (47) reduce to 

A/Ao=(AH/HM)m, (50) 

as already stated in the text, and as shown by the dashed 
parabolas in Fig. 6. 
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APPENDIX III: ALIGNMENT OF THE 
PARAMAGNETIC IONS 

Although it has been assumed in the body of this 
paper that the impurity spins are a priori locked into 
ferromagnetic alignment by some unspecified mecha­
nism, it is nevertheless of interest to investigate the re­
action of the superconducting electrons back on the ion 
spins. The usual way of computing the interaction 
energy for a given impurity spin alignment is by 
means of the wave-number-dependent spin suscepti­
bility %(#) of the conduction electron system. But 
because of the strong nonlinear response, this pro­
cedure is not appropriate in the present case of 
the depaired superconductor. Nonetheless it is inter­
esting to note that the differential susceptibility for 
<7=0 is larger in the depaired superconducting state 
than it is in the normal state. This can be seen easily 
from Fig. 5 by comparing the slopes of the magnetiza­
tion curves for the normal and depaired states. Although 
it is difficult to calculate the differential susceptibility 
for q^O its qualitative behavior is apparent by realizing 
that for # > ! / £ (£= coherence distance in the depaired 
superconducting state) the response of the depaired 
superconducting state must approach that of the normal 
state. 

I t might seem that this long-range positive polariza­
tion cloud around a point perturbation would tend to 
favor ferromagnetic alignment of the paramagnetic 
ions—but this conclusion would be incorrect. In order 
to compute correctly the reaction of the superconducting 
electrons back on the ferromagnetically aligned ions, 
we first assume all impurity spins lined up and then con­
sider how the energy changes as one of the impurity 
spins is flipped. This spin flip corresponds to a fractional 
reduction in the strength of the uniform exchange field 
Hex by 2/^/12, where ni is the impurity density. The 
difference of the energy increase of the electron system 
in the depaired and normal states is consequently 

-fxIB=2(M~Mn)AoHex/nIf (51) 

where JJLI is the magnetic moment of the impurity and B 
can be interpreted as an effective decrease in the 
strength of the Weiss molecular field which gives rise 
to the ferromagnetism. From the linear relationship be­
tween the Weiss field and the Curie temperature, we 
find that the reaction of the superconducting electrons 
decreases the Curie temperature by 

4(s+l)EBcsHe*M-Mn 

A6c= , (52) 
3kBnrs NAQ 

where s is the impurity spin and IZB is Boltzmann's 
constant. Introducing the transition temperature 
r c = A 0 / 3 . 5 from the BCS theory, we can put Eq. (52) 
into the form 

Adc 7 H - l ) # e x A W n A0\Mn~M 
= . (53) 

Tc Ss n \nT eF/ NA0 

As all of the factors are of the order of unity except those 
inside the parentheses which can be estimated at 10~2, 
it is evident that the decrease in Curie temperature is 
quite negligible. I t should further be noted that, be­
cause M is much closer to Mn in the depaired state than 
it is in the BCS state, the Curie temperature change is 
even smaller in the former. 

The stability of the system with respect to spin flip 
of one impurity does not imply, however, stability with 
respect to a collective rearrangement of all impurity 
spins. Anderson and Suhl21 have shown that for weak 
fields He* a space-dependent impurity spin arrangement 
of a screw type with wave number q is energetically 
favored. In the weak coupling limit of superconductivity 
the difference in spin polarization energy per unit 
volume between the normal and superconducting states 
is given by 

Ws(q) = (Xp/2)(A 0F e x /^) 2 / (^o) = 2EBcsfireX
2/(^o), 

-irEBCsHe^Zoq, (54) 

where /(0) = 1, but the asymptotic approximation is 
accurate enough for X>T. Clearly the superconducting 
system will prefer large q (small wavelength). This 
tendency is opposed by the loss of spin-spin alignment 
energy. We can estimate this loss in a way similar to 
that used for calculating the energy it takes to form a 
Bloch wall. If a2 denotes the mean-square range of the 
spin-spin interaction, the energy density is given by 

Wi(q) = lsnI6cMs+ l ) > y , (55) 

(see, for example, Ref. 6). Our coefficient of q2 in Eq. 
(55) differs from that of Anderson and Suhl and ex­
hibits more explicitly the dependence on the strength 
and range of the interaction between impurity spins. 
By minimizing the total energy density 

W=Ws(q)+WI(q), (56) 

with respect to q, we obtain the optimal wave number 
qi of the screw-type impurity spin arrangement. By 
noticing that Ws{qi) = 2Wz(qi) we can write down #/ 
immediately to be 

r 2 7 r ( ^ + l ) £ B C S ^ e X
2 n 1 / 3 

By inserting this expression into Eq. (56) one obtains 
the energy of the superconducting state and sees that 
it is lower with this cryptoferromagnetic screw ordering 
than it would be for the strictly ferromagnetic order­
ing of completely aligned impurities (q=0). For large 
Z?eX

 o n e expects again some kind of depairing, such as 
studied in the body of this paper for the ferromagnetic 
case, but the details are now very much more compli­
cated and have not been calculated. As the single-
particle wave functions describing the motion of the 

21 P. W. Anderson and H. Suhl, Phys. Rev. 116, 898 (1959). 
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electrons through the strong space-dependent spin ex­
change field would no longer be plane waves, but in­
stead Mathieu functions, the methods used in this 
paper for computing the depairing could no longer be 
applied. 

The situation might be changed, however, if there is 
an appreciable anisotropy energy between the im­
purities and the host lattice. This anisotropy energy 
density, Km, will distort the sinusoidally varying im­
purity spin arrangement into a square wave. Most of 
the spins will now be either parallel or antiparallel to a 
preferred direction and only a relatively small fraction 
will participate in the formation of Bloch walls. 

Instead of Wi(q) it will cost now an energy density 

WB{q) = {KnI/^Bq (58) 

to form the Bloch walls where £# is an effective wall 
thickness which will depend upon the Curie tempera­
ture as well as upon K. The factor (l/ir)q enters as we 
require one Bloch wall for each half-wavelength of the 
square wave. WB(q) will now replace Wi(q) in Eq. (56) 
and a wave number qB which minimizes the new total 
energy expression, 1.71 Ws{q)~{-WB{q), can be calcu­
lated. For q=qB the relation 1.71Ws(qB) = WB(qB) holds 
and yields 

7T#ex / 1 . 7 L E B C S \ 1 / 2 

qB = ) . (59) 

(fofoM Km J 
The correction factor 1.71 is 147r~2 times the Riemann 
zeta function f (3) and represents the modified response 
of the superconducting electrons to a square wave in­
stead of to a sinusoidal wave. The condition that the 
Anderson-Suhl cryptoferromagnetic state is actually 
the state of lower energy is 

2/ (gB&X/(0) = l , (60) 
or equivalently 

£ * > * / & . (61) 

Inserted into Eq. (59), this becomes 

W£o<#ex 2 (1 .71£ B cs / i ^z ) . (62) 

A simple Bloch wall calculation relates the wall thick­

ness to the Curie temperature and anisotropy energy: 

& - al9sOc/2(s+ 1)KJ/2. (63) 

Substitution of Eq. (63) into Eq. (62) yields 

<0.65# e x
4 - ) , (64) 

EBCS S \ Km J \ a / 

with the qualification that the entire analysis is valid 
only if the anisotropy energy Km is greater than £BCS, 
so that the next to the last term is less than unity. As­
suming this to be true, we may then note that the last 
two factors combine to be independent of the energy 
gap. If we introduce the quantity Sa=Sfi2/(27r2ma2)y 

Eq. (64) becomes 

nidc CH-1) &a n 
<0.65# e x

4 . (65) 
£BCS s . K m 

As remarked by Anderson and Suhl, the left-hand mem­
ber is of the order of 102—which about matches the 
last factor on the right. Furthermore, we are interested 
in the range # e x ~ l.Thus, the question of whether or not 
the cryptoferromagnetic spin alignment has lower 
energy than the ferromagnetic order depends upon 
whether or not Sa is greater than or less than K. Both 
of these quantities are completely undetermined in the 
alloys of interest. Barring symmetries which might 
suppress the strength of K in any given case, a fair guess 
might be 10~4 eV. For Sa to equal this would require a 
root-mean-square interaction range of a ~ 100 A, as com­
pared to a nearest-impurity neighbor distance in a 1% 
solution of about 10 A. Such a long range is very im­
probable, although indications of unusually long inter­
action range have been found experimentally in some 
instances. Unless the anisotropy energy is very much 
greater than estimated, it would seem that the in­
equality (65) is comfortably satisfied and that the 
Anderson-Suhl cryptoferromagnetic ordering represents 
the ground state of the superconducting alloy. This con­
clusion leaves, unfortunately, completely unexplained 
the experimental reports of ferromagnetic alignment 
and remanence in the superconducting state. 


